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Abstract— Concrete spalling and crack inspection is a labor
intensive and routine task. However, it plays an important role
in structure health monitoring (SHM) of civil infrastructures.
Autonomous inspection with robots has been regarded as one of
the best ways to reduce both error and cost. This paper presents
an automated approach using Unmanned Aerial Vehicle(UAV)
and towards a Concrete Structure Spalling and Crack database
(CSSC), which is by far the first released database for deep
learning inspection. We aim locate the spalling and crack
regions to assist 3D registration and visualization. For deep
inspection, we provide a complete procedure of data searching,
labeling, training, and post processing. We further present
a visual Simultaneously Localization and Mapping(SLAM)
approach for localization and reconstruction. Comparative
experiments and field tests are illustrated, results show that
we can achieve an accuracy over 70% for field tests, and more
than 93% accuracy with CSSC database.

I. INTRODUCTION

Manual inspection and evaluation is a common procedure
for structural health monitoring (SHM). The human inspec-
tors need to periodically detect the visible surface defects
(such as cracks) and the interior subsurface defects (such
as delamination or voids) using non-destructive evaluation
(NDE) devices such as high resolution cameras, impact echo
(IE) [1] and ground penetration radar (GPR) [2] to assess the
serviceability conditions of civil infrastructures. However,
such manual inspections are time consuming, labor intensive,
and often require the setup of scaffolding equipment to
access hard to reach places, which is costly and leads to
safety concerns.

Machine vision and automated inspection and evaluation
procedures have become very popular for detecting surface
flaws in civil engineering communities in the past decade
[3]. Conventional image processing methods are applied for
detection by emphasizing the high contrast distinct visual
features. Edge detection algorithms, such as fast Haar trans-
form (FHT), fast Fourier transform (FFT), Sobel operator
and Canny edge detector, have been deployed for crack
identification [4]. These algorithms are also used with other
algorithms such as image segmentation, image thresholding
(like OSTU) and morphology operations [5], and work
well on uniform background. But these are still relying on
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segmentation and handcrafted feature detectors (like edge,
line) for training, and lead to failures for various defect types.

The concept of using deep convolutional neural networks
(CNN) for tunnel visual inspection was presented in [6],
where related techniques and descriptions were elaborated.
Authors in [6] mainly used the CNN for feature extraction
and Multi-Layer Perceptron (MLP) for classification. The
paper didn’t make it clear that what is the database, and
what kind of defection can be detected by the system.
Crack detection is discussed in [7], and it is said to have
a better accuracy over SVM and boosting without notifying
the corresponding database and field tests. Authors in [8] did
a good job for providing a database for crack inspection and
labeling, and evaluation of the performance.

To automate the concrete structure crack inspection, var-
ious robotic systems have been explored. Authors in [9]
developed an early vision-based inspection vehicle robot
which used batch processes of crack detecting algorithm-
s and data storage in bridge management system (BMS)
database. Vision-based UAV robots were deployed for bridge
inspection and condition assessment in [10], and conven-
tional image processing approaches were applied for crack
identification. Therefore, based on our previous research
on non-destructive evaluation (NDE) robotics for concrete
deck inspection [11], it is very promising to deploy UAV
inspection robot for low-cost and omnibearing detection.
By automatically collecting increasing amount of inspection
data along with corresponding spatial information, data-
driven based classification and recognition approaches like
CNN shows the potential to provide more robust inspection
detection result for SHM assessment than conventional ap-
proaches.

This paper present a low-cost automated inspection ap-
proach using UAV equipped with stereo-vision system. Our
contributions are two folds. First, we build a database by
collecting and labelling images of spalling and cracks on
concrete structures for deep training purpose, and we eval-
uate the deep learning approach performance for inspection
based a proposed cascading shotting approach. Second, we
leveraging our previous work on UAV navigation and SLAM
[12], [13], [14], [15]. We further developed a novel method
to project the labelled 2D flaws to point cloud model for 3D
visualization. To the best of our knowledge, this paper firstly
utilizes the robotics automated UAV for deep learning based
visual inspection on concrete structure.



Fig. 1. The inspection system consists of CityFlyer UAV with mission planner and navigation control system, Deep-Inspector software for spalling and
crack detection and labelling, and VO-based positioning and mapping module. The final 3D map can be merged into GIS system, which can help build
seamless data net for monitoring purpose.

II. SYSTEM ARCHITECTURE

As shown in Fig.1, the inspection system consists of three
subsystems, including: 1) Control and Mission system (CM-
S): a quadrotor UAV with mission planner and navigation
control system [13], [12]. It fuses visual odometry with
inertial measurement unit (IMU) data, called visual inertial
odometry (VIO) with an output frequency of 100 HZ, for
robust positioning control. 2) Deep-Inspector: Towards a
CSSC database system with very deep CNN for spalling
and crack detection and labelling. It is performed on the
ground station via wireless data transition at 2 HZ. 3) visual
positioning and mapping (P&M): loop closing is introduced
to reduce drift of visual odometry (VO) to guarantee accurate
positioning and 3D point cloud mapping with defect area
registration for visualization. Hardware of CMS is consist of
CityFlyer[13], [12] and a laptop based ground system. Since
the paper mainly discuss the deep database system and 3D
positioning with defect registration, we just provide simple
knowledge of VIO.

A. Visual Inertial Odometry

We introduce Mulit-state-EKF(MS-EKF)[16] to fuse IMU
measurement and VO in a direct approach, that is, the IMU
measurement acts as the propagation and the VO acts as
correction.

For IMU, its evolving state vector is,

XIMU = [W ℜT
I

WV T
I

W aT
I

I
W q ba bg] (1)

Where W ℜT
I denotes the position of IMU in the world

frame W . I
W q is unit quaternion that represents the rotation

from the world frame W to the IMU frame I. WV T
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I
are the IMU velocity and acceleration with respect to the
world. ba and bg denote the the biases affecting the gyroscope
and accelerometer measurements.The system derivative form
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Where W
I C is the translation from the IMU frame to

the world frame, am is the acceleration measurement, wm
is the angular velocity measurement, ∆T denotes the time
interval, g denotes the gravity. The aI acceleration subjects
to a rotation and translation in inertial frame, wI denotes the
angular velocity. Ω is the matrix product referred in [16].

Once, VO system outputs the pose Pvo = [r, t] (r denotes
the rotation, and t denotes the translation), we can update
the system based on the measurement model,

Z = HXIMU +V (3)

Where Z denotes the measurement, V denotes the mea-
surement noise. H denotes the output measurement matrix.
Then, the prediction from IMU propagation can be corrected
by updating through EKF approach.

III. DEEP BASED DETECTION

The core of the system is the deep inspection system
with database with data-collection ability. To our knowledge,
there does not exist any database containing this kind of
information, especially for both spalling and crack. With web
search and real data collection in Manhattan, New York), we
built the CSSC database. We also keep the field test data for
public. In this section, we discuss the complete procedure
of data preparation, labeling, training and post processing to
vote defective region for 3D registration.



Fig. 2. Architecture of the proposed Fine-Tuned VGG-16 (FVGG) model. FVGG is robust to input resolution to enable precise detection.

A. Data Preparation And Labeling

It is should be noted that web keyword search provides
random results, and we have tried the following key words:

• For concrete spalling: Concrete spalling, Concrete
delamination, concrete bridge spalling, concrete column
spalling, concrete spalling from fire, concrete spalling
repair, concrete wall, etc. We used search engines
Google, Yahoo, Bing, and Flickr, and found total of
22,268 images. From all these images, only 278 images
were deemed useful for training.

• For concrete crack: Concrete crack, crack repair, con-
crete scaling, concrete crazing, concrete crazing texture.
We found a total of 16,215 images, and 954 images were
used for crack detection.

The 278 spalling images and 954 crack make up the
initial CSSC database. Since the randomly posted images
on the Web are not well tagged with the flaw area, and the
shape of the spalling and crack region tends to be stochastic
in distribution (illustrated in Fig.3(a) Fig.3(b)), we label
the area manually as illustrated in lower part of Fig.3(a)
and Fig.3(b).) by referring the experts in civil engineering.
It should be noted that: 1) spalling defects are normally
quite apparent, the color information information should be
included for further detection. 2) the civil engineers care
more on unobvious cracks as discussed in [18], thus should
be more careful when labeling.

The defect region distribution of spalling and crack tends
to be unorganized and cannot be marked with a fixed
rectangle region, also the method proposed in [19] does not
work in our robot system as the distance varies with flying.
For training purpose, this paper cuts the images with region
of interests(ROI) into different size of sub-parts, such as
100∗100 and 130∗130 illustrated in Fig.4).

In order to decide whether a sub-image should be selected
or not, we define a rule to determine whether a random cut
part can be used as ROI training positive input. Since we
have the manually labeled results as illustrated in Fig.3, this
paper propose to use pixel threshold to pick the positive and
negative data. Let define the manually labeled region contains
N pixel level labels. For each random generated small parts
Is, given the following rule,

f lag =

{
0, i f n(Is)<= 0
1, i f n(Is)>= N ∗ k (4)

Fig. 3. Representation of spalling and crack images with manually labeling.
The above two rows show the crack images with its manual labeling. In this
paper, we label the images to enable distribution estimation of the images,
which then helps to evaluate the health condition of the concrete structure.
The below two rows represent the spalling images with its manual labeling,
which then enables the sub-cutting for training.

Fig. 4. Examples of generated positive training images based on proposed
selection criteria. The spalling images are presented with size of 100∗100
with k = 0.04, and 130∗130 with k = 0.06 for training. The crack images
are also presented with 100∗100 with k = 0.04, and 130∗130 with k = 0.06
for training.

Where k denotes the percentage.

B. The CNN Model and Training

This paper uses a fine-tuned VGG-16 (FVGG) for classifi-
cation [20] which has shown its ability to deeply understand
image high level features and provide effective representation
feature. The network architecture is presented in Fig.2, where



Fig. 6. Missed detected examples in CSSC database by using our model.

the image input is decided with a distance gain. FVGG was
fine-tuned with a large number of settings, and we finalized
the network as: 1) we fixed the first 11 layers parameters,
2) we release the layers from 12 to 16, and changes the last
fully-connected layer to 3 channels.

The training performs 400 iterations with a batch size 40
over 15,950 images. We set the learning rate as 1.0E − 3
for the first 200 iterations, and then adjust to 5.0E − 4 for
the second 200 iterations. We tried to change the learning
to a smaller scale, but got worse detection rate. The overall
objective loss deploys the following form:

L =−∑
xI

p(xI)log(q(xI)) (5)

where p(xI) denotes the true probability of input xI , q(xI)
is the predicted probability.

C. Post Processing For Defects Labeling

After the model is well trained, we utilize the model to
do detection. In Section III.B, we discussed that the input
images are varied with the distance. The distance factor
can be easily achieved with stereo camera. For a constant
sub-image size Is, we use a sliding window to do detection
through the whole image. Then each image will be labeled
with crack true, or spalling true, or no defects. Since the
accuracy of the model cannot be guaranteed to be 100%, we
store all the detection results of the same place and the final
decision is made through the averaging the probability.

IV. VISUAL POSITIONING AND INSPECTION
REGISTRATION

3D representation of the construction is commonly used
for reverse engineering applications and structure analysis in
civil engineering, besides 3D model can help by providing
depth information as well as the distribution for better post
assessment [21]. In this work, the 3D mapping system is built
based on the visual-SLAM, then the deep based detection
result helps to register the spalling and crack region in the
3D map.

A. Loop closing Aided VO

Visual Odomery cannot eliminate the long term drift
without adopting the loop closing to correct the error. For
SLAM, we just record the key frames F K = {Ii,Pi|i ∈
{1,2, ...,m}} (i.e vertex) based on detection of threshold
movement, where Ii is the image, Pi is the pose. We know
that the step transformation between consecutive two frames,
and the transformation Ti, j between any two frames i, j can

Fig. 9. The over detection and missed detection cases in field test 1.
The orange rectangles denote over detection, and the missed detection are
represented with blue rectangles.

be derived the same way. The best aspect of SLAM is that
it can help find the correlation between frames, that is, edge.
Then, we can optimize the key frame poses with the form
[22],

(KP∗
i ,

K P∗
j ) = argmin

KPi

(KP̂j −Ti, j ·K P̂i)
T Ωi, j(

KP̂j −Ti, j ·K P̂i)

(6)
Where Ωi, j denotes the information matrix, ∗ denotes the

optimized pose, ∧ denotes the estimation. After each pose
optimizing process, we only consider the errors of the last
key frame to be corrected, and we have the error with,
KTerror =

K P∗
last ·K P−1

last . Then, we can correct the current VO
output with P∗

current =
K Terror ·Pcurrent .

B. Spalling and Crack Alignment

For spalling the area and depth information is interesting
to engineers. The deep detection tells the regions, it enables
marking of the region with special color in the 3D model,
which in turn provides much easier way for evaluation. For
crack, engineers are more interested in the tiny cracks with
width information. The regions can give more information
to do post detection for crack and spalling distribution.

V. EXPERIMENTS

Since the robustness of the CityFlyer control system has
been demonstrated in [12], [13], we skip this part. The
simulation is carried out to detect the region of spalling and
crack in CSSC. We provide a detailed analysis for success
and failure. The two field tests were performed in Manhattan
with CityFlyer, both under bridge area.

A. Deep Network Based Detection with CSSC

The initial CSSC database is divided into three parts, that
is, 70% for training, 10% for validation, and 20% for testing.
Some results are illustrated in Fig.5. For test, we achieved a
93.36% mean accuracy(see in Table. I). The failure detection
is mainly caused by image blur or low contrast light.

In Fig.5, images #1,#2,#3 are spalling detection results,
and images #4,#5 are crack detection results. For an expert



Fig. 5. Results generated by our deep based detection model with CSSC database, where the green rectangle denotes the region of spalling and crack.
In images #6 and #7, the red features denote the post-labeling of the crack for evaluation, where the width of the crack can be achieved via stereo-vision.

Fig. 7. The detection results achieved by CityFlyer in field test 1. Image #1 denotes the trajectory of the CityFlyer, #2 and #3 are detected results, and
#4 is the 3D registered model.

Fig. 8. The detection results achieved by CityFlyer in field test 2. Image #1 denotes the trajectory of the CityFlyer, #2 and #3 are detected results, and
#4 is the 3D registered model.

TABLE I
QUANTIFIED RESULT OF DETECTION WITH CSSC DATABASE

Database Average Precision (%) Partial Incomplete Detection (%) Total Image
CCNY-CSSC 93.36 6.64 1232

TABLE II
FIELD TEST RESULT AT MANHATTAN 155 ST

Test No. Average Precision (%) Blurred Image (frames) Average Precision Without Blur(%) Over Estimated (%) Total Image
No.1 72.45 149 76.73 97.18 4998
No.2 67.65 55 71.19 24.3 2650

Further Tuned With Field Data
No. 1 83.69 149 87.97 93.34 4998
No. 2 81.38 55 84.92 33.57 2650

engineer, the most difficult part is not to find the spalling, but
to find the crack(especially minor crack). Thus, our method
adopts a two steps approach: 1) deep network based detection
to the region containing the crack;2) feature detection to find
the crack distribution. Then, we can see in Fig.5, images
#6,#7 with red labeling indicates the distribution of the
crack. Mis-detection is presented in Fig.6, where image #1
dneotes the case of image blur, and image #2 denotes the
case of low contrast.

B. Field Tests in Manhattan

The field tests were carried out at a bridge located at upper
west side of 155th Broadway in Manhattan. The ground
station for monitoring and deep CNN processing was a Dell
XPS 15 laptop, with a Nvidia 960M graphic card. Two sets
of field tests were implemented with different scenario.

1) Field Test 1: The first experiment was performed at
the middle part of the bridge where a darker light affected



the inspection. The flying duration was 210s with a total of
4,998 images captured. It is presented in Fig.7. The purple
line in image #1 denotes the trajectory of CityFlyer with the
goal to capture the spalling and crack at the right angle.

The expected spalling and crack region number is two,
which is shown in Fig.7 and in image #2 and a closer look of
right part is shown in image #3. For all the detection results
we found so far, shows 76.73% accuracy without image
blur (see in Table.II). Our 3D registration has an advantage
to do 3D visualization, and it enables professional health
evaluation. It is shown in image #4, our method can label
the region in 3D space for inspection.

Simulations with CSSC show that image blur can affect
the detection, which is also found in field test as illustrated
in Fig.9. The blue rectangles denote the missed detection.
By analyzing all the images, we found that the image
brightness, image contrast, and blurred degree affect the
detection accuracy, which then should be considered to be
pre-processed to improve the accuracy.

2) Field Test 2: The second experiment was carried out in
the entrance of the under bridge area, where a brighter light
exists. Fig.8 shows the CityFlyer’s trajectory and several rep-
resentative results, and the 3D registered model is presented
in image #4. CityFlyer was set at the left side of the spalling
and crack region, then it tried to move toward the front angle
of spalling and crack for inspection (see in image #1). This
site contains two spalling and crack regions as illustrated in
images #2 and #3. For all the images collected, we have an
average accuracy of 71.19% without blurred image.

Compared to Test 1, the brighter image gave better in-
spection results. It is shown in Table.II, the over detection is
represented by the orange rectangles in Fig.9, image #1,#2.
Over detection is casue by darker light, which lowers the
feature comparison between palling and crack region with
other regions. Thus, Test 1 has a 97.18% over estimation
compared to 24.3% of brighter images.

As discussed in simulation and experiment 1, image blur
and brightness affect the detection a lot. Besides, we further
fine-tuned the model with field test image data with the same
process as discussed in Section.III. The comparative results
are illustrated in Table.II, we can see that we got 11.14%
and 13.73% improvement after fine-tuned with filed images.

VI. CONCLUSIONS

The paper proposed a automated UAV-based system for
concrete structure inspection with the ability to locate s-
palling and crack area and then to provide depth and width
information for evaluation. Inspection system consists of C-
ityFlyer for image capturing with a visual-inertial odometry,
deep based spalling and crack detection, and 3D registration
for visualization. The system can significantly lower the labor
costs. Moreover, it has an advantage of accurate automated
detection. The system shows a 93.36% detection accuracy
with CSSC database, and over 70% accuracy with field tests.
The system supports real-time localization with detection
processing and can be used as a reliable system for concrete
structure health monitoring.
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